
I ILL ®r~.,'

DTIC

EL-ECTE

CF JAN23

it Y FTh R OC

AIR FORCE INSTITUTE OF TECHNOLOGY N

.....~.** Wright-Pa~weson Air Famrc as, Ohio v4

____ ____ ____ -w pu

'I R3TIN TADITA -- 89hr~~. 4ui lsn

t0

I
AFlT/GE/ENG/88D-39

DESIGN AND IMPLEMENTATION OF A

PC-BASED NETWORK SIMULATOR

FOR ENGINEERING EDUCATION

THESIS

Ralph D. Puckett Captain, USAF, ,,,D.,DTIC
AFrTr/EMNG/88D-39 O I

I

Approved for public release; distuibution unlimited>1

AFrTIGE/ENGI88D-39

DESIGN AND IMPLEMENTATION OF A PC-BASED

NETW'ORK SIMULATOR FOR ENGINEERING EDUCATION

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering

Ralph D. Puckett

Captain, USAF

December 1988

Ad

mEI

Apovte for pFbioreae istriutio n u nlogyte

Ai nvest
(InPria uflmeto h

S I
A

jThe purpose of this study was to develop a computer aided design (CAD) tool to

supplement instruction in computer communications networks. There existed a need for

Icomputer aided modeling and analysis of user-defined networks and this work was

1dedicated to that purpose.

Most of the effort was concentrated on providing a graphical interface between

human and machine with the ultimate goal of making the operation of the tool as transparent

as possible. Although extensive testing was done during the development, the ultimate test

i will be whether or not the software helps the student understand concepts presented in

textbooks and lecture.

I would like to acknowledge some of the individuals who helped make this work

possible. First of all, I'd like to thank my thesis advisor, Capt George, for providing

direction, encouragement, and perhaps most of all, a positive attitude. I also wish to thank

LTC Garcia for the use of his computer network class in beta testing the software. Thanks

go also to my committee members, Capt Davis and Capt Fautheree. Finally, I wish to

I express my profound gratitude to my wife Haeng Soon for her tolerance, patience, and

I moral support.
Ralph D. Puckett

LAossion orI ITIS GRA j

DTIC TAB 0
| _ | Justifivation_ _

I By.

Di stribution/

Availability Codes

Avail and/or

Dit Spca

I

able of Contents

.J .
Page

Preface ... ii

List of Figures ... iv

Abstract .. v

I. Introduction

11. Review of the Literature .. 6

III. Network Theory .. 13

Networks of M/M/1 Queues 13

Flow and Capacity Assignment 17

IV. Software Development ... 20

Requirements ... 20

Design .. 23

Implementation ... 32

Detailed Development ... 38

Testing .. 40

V. Results and Discussion ... 42

Development Methodology ... 42

Test Results .. 42

Recommendations .. 45

Appendix A: User's Manual .. 47

Appendix B: Tests ... 65

Appendix C: Software Evaluation Survey Results 79

Bibliography .. 81

Via... 82

L

i
List Qf Fij Es

Figure Page

1. Network Modeling......... 14

2. Network Parameters (Input) 16

3. Network Parameters (Calculated) ... 18

4. Data Stuctur csign .. 26

5. Structure Chart - High Level Design ... 27

6. Structure Chart - High Level ... 35

7. Structure Chart - Network Editor .. 36

8. Structure Chart - Routing Editor Module 37

9. Structure Chart - Analyzer Module 38

10. Comparison with Comnet 11.5 ... 44

iv

..

[

f AFIT/GE/ENG/88D-39

i Abstract

The purpose of this study was to design and implement a simulator to assist stu-

dents of computer networks. The basic objective was to create a software application that

provides rapid feedback on network design decisions. Of particular interest is the packet

switched network with data links of various capacity assignments. Another basic objective

was to create a graphics interface that eliminated the need to learn a simulation language

while still maintaining a powerful and useful product.

The end product was a result of the application of both networking theory as well as

software engineering principles with particular attention being paid to reliability and

maintainability. With this tool the student can create any network topology simply by

pointing and clicking a mouse and entering a few network parameters from the keyboard.

The application can be run on a personal computer - an environment which is accessible

and fairly well understood.

The design and implementation of the application is presented in this work along

with the results of developmental testing. In addition, a sample of fifteen students was

chosen to provide the initial beta test and those results are presented. A comprehensive

I user's manual is included as an appendix. Finally, several recommendations concerning

future development are discussed.

Iv

I

4

DESIGN AND IMPLEMENTATION OF A PC-BASED NETWORK

SIMULATOR FOR ENGINEERING EDUCATION

1i

Overvie

The Department of Electrical and Computer Engineering of the Air Force Institute of

Technology is involved in an on-going process of building a catalog of software tools that

are developed in-house. The fundamental purpose of each tool is to enhance both

educational and research activities. This thesis chronicles the development of one such tool

aimed specifically at the design and analysis of computer communication networks.

Specifically, the tool's purpose is to automate the mathematics of computer network design

in order to provide rapid analysis of network design decisions. The work drew principally

from three fields of study. Two of these areas are computer networks and software engi-

neering. A third perhaps more subtle and possibly more intriguing area is that of the

human-computer interface, part of the larger discipline of what has come to be known as

human factors engineering. A primary concern during the development of the project was

that the software produced be useful, not a trivial statement given the amount of software

I available that is difficult to learn and use. It became evident during the development of this

project that, as a general rule, there is an inverse relationship between ease of use and

program complexity. Therefore, much of the time and effort devoted to this work was

Idirected toward the transparency of the human-machine interface.

1

[Iu~m

!

Qr~ization
The remainder of this chapter will provide some background leading up to a statement

of the problem. It will also describe the approach taken to solve the problem as well as the

tools and materials used in the development of the solution. The following chapter presents

a review of the background literature with emphasis on past research efforts in computer

network analysis and software development methods.

Following the literature review will be presented a chapter on the development of the

network theory and the analytical models that were implemented. The succeeding chapter

will provide a detailed account of the software development process itself. The final two

chapters will present results and discussion and finally some ideas on areas in need of

further study or refinement.

Students in the computer communication networks sequence of study at the Air Force

Institute of Technology (AFIT) are responsible for becoming familiar with the analysis of

many different types of computer networks. Many of the points presented in lecture are

more easily understood if the student is able to simulate networks through the use of

graphics-based computer aided design (CAD) tools, thus making the mathematics

transparent. There are presently available a variety of tools commercially that perform

generalized network simulation and analysis but are not specifically designed to enhance the

study of computer networks. These applications often require the knowledge of difficult

commands or even an entirely new computer language, thus causing the learning curve of

the software to interfere with the mastery of the subject material, In other words, power

and ease of use seem to have an inverse relationship. Also, these packages are expensive

and probably out of reach of most personal budgets.

2

'I

Given the above observations it becomes apparent that there exists a need for a

software tool available in the public domain targeted at network topology to supplement the

material presented in an introductory course in computer networks. The desired outcome

as defined by members of the faculty at AFIT is rapid analysis of network design

decisions. Furthermore, the system developed should fit into the somewhat ambiguous

genre of "user-friendly" application software.

Problem tateent

Presently there is no requirement for laboratory work to supplement the lecture in the

introductory course in computer networks. In order to develop an effective laboratory

program, useful tools should be either acquired or developed. Presently available software

tools alone do not adequately fulfill these needs and therefore development of software

tailored more to the educational environment is in order. The objective of this research is

the creation of a PC-based CAD tool that automates the design, analysis, and evaluation of

computer network topologies presented in lecture.

Apamh

The area that received the largest amount of attention was that of the user interface. A

search of the background literature revealed some basic ideas about what makes a given

application easy and interesting to use. Although the interface went through a series of

refinements the ideas presented in the literature continued to be the basis for the design and

implementation. Presently, there is not a standard interface for the software tools created

at AFIT and consequently the visual manifestation of the application developed was largely

a statement of the author's own ideas. Several ideas were implemented and tested

iteratively until a final implementation was decided upon.

3

Another main concern involved the search and acquisition of the necessary de-

velopment .,ols that supported graphics, mouse operation, and printing. Emphasis was

placed on the level of support provided, guided by the notion that enhanced software

development tools should encourage the development of better software.

After the software tools were selected but before the actual development of the

software began, some time was spent iteratively writing and testing small routines that

performed the low level tasks. For example, in order to draw a computer network on the

display several graphics primitives were tested. It became apparent that some primitives

required more computational power (and hence time) to create than others, particularly

when floating point operations were involved. One outcome was the decision to use

rectangular rather than circular objects to represent the nodes of a computer network.

Next it was necessary to research the computer network theory problem set to be

modeled or simulated. This work relied heavily upon the textbooks currently used in the

computer network sequence of study at AFIT. The outcome was a set of equations that

were later mapped into the software solution.

Given the set of software tools and the set of analytical models, the actual devel-

opment of the software could proceed. The process required that the requirements be

organized and then mapped into a preliminary set of structure charts. From the structure

charts a process of iteratively coding and testing the software was undertaken. Finally, the

finished product was put through a series of formal tests as well as a field test involving the

students in an introductory course in computer networks. Throughout the implementation

phase, advice was solicited from fellow students as well as the thesis advisor and other

faculty members.

4

i
iMaterials and gipe

The Digital Engineering Laboratory at AFIT has a number of Z-248 microcomputers

equipped with mice and Enhanced Graphics Displays (EGA). Although there are more

powerful machines available in the lab, the Z-248's were more plentiful and used the

popular MS-DOS operating system, already familiar to a majority of the students. Using

these machines the software can reach a larger audience and the PC was therefore chosen to

host the application developed in this study. The actual development was done on a 10

MHz 8088 based PC compatible machine equipped with a 30-Megabyte hard disk, EGA

display, and Logitech mouse.

The software requires a PC compatible microcomputer with either EGA (256K) or

Hercules graphics, and a Microsoft compatible mouse. To produce a hard copy of the

drawings, the printer must support IBM graphics.

The software was written in Turbo C, version 1.5 customized with the CXL extended

language library, version 4.0. According to its licensing agreement, the CXL package may

be used for non-commercial software development without the payment of licensing fees.

A copy of the package has been submitted with the simulator source code to the Department

of Electrical and Computer Engineering in the School of Engineering at AFIT.

The Turbo C package is a commercial product and must be licensed before it can be

used. The compiler has extensive graphics support while the CXL library provides mouse

and windowing functions. The graphics driver (VGAEGA.BGI) provided with the C

compiler was converted to an object file and added to the graphics library, thus eliminating

the need for a separate device driver to execute the program.

5

II. Revew of LTh Literature

The background literature for this effort is divided into two broad categories: com-

puter network analysis and software design. The first subset is concerned with the object

to be modeled, that is, the network itself. Because the product of this thesis will support a

specific course sequence at the Air Force Institute of Technology, the thesis advisor and

faculty members have clearly defined the type of networking problems to be studied. The

second subset, that of program design and implementation, deals with software engineering

issues and is well supported by past and present research efforts.

Computer Network Analysis

M/ML1 Oueueing Systems. In order to simulate the arrival of traffic into a network a

model must be devised that reasonably approximates a real world situation. One of the

most widely used queueing models is the M/M/1 model attributed to A.A. Markov and de-

scribed by Kleinrock and others. This model is popular due to its "memorylessness"

property; that is, the system is completely defined by its present state and therefore the

point of time at which study of the system begins is irrelevant. The fact that the analysis

does not change as a function of time greatly reduces the amount of analytical complexity

and permits mathematical models that are tractable. The continuous M/MI system is char-

acterized by exponential distributions of both time between arrivals and service time (7:94-

98). Tanenbaum found that an exponential interarrival time density is a reasonable

approximation to data packet arrivals in a network and that the same distribution can be ap-

plied to service times as long as those times do not become exceedingly long (11:58).

Di Tanenbaum presents an introduction to the backbone design of a data net-

work in his text C Networks. The process begins by generating a starting topol-

ogy based upon geography and then refining the topology with an optimizing heuristic such

as the link deficit algorithm. The link deficit method assigns links between stations in such

6

f
a way that the physical lengths of the links are minimized while also minimizing the number

of links connected to each node. Flows are then assigned using the shortest path algorithm

*, which requires that the data traffic use the shortest routes available. The final step is the

calculation of the optimal capacity assignments for each link based upon the desired average

delay for the system. Tanenbaum's method is based upon static routing paths; however, as

long as the network is in a reasonable state of equilibrium the model should approximate a

network that routes its traffic dynamically (11:61-71).

Software Development

The software development of this project draws from the areas of software en-

gineering, database design, computer graphics, and the study of the human-computer

interface. The goal of this literature review was to determine the present state-of-the-art in

these areas as they apply to the computer environment chosen for this work (the PC-

compatible microcomputer).

Sftare Enneerin. The engineering of high-quality software can be broken down

into four major subactivities: requirements analysis, design, implementation (coding), and

testing. The primary purpose of requirements analysis is to decompose a complex problem

into pieces that are easier to manage. There are a number of different ways to attack the

problem, ranging from problem-statement languages to graphical CAD tools. The desired

result is a set of specifications or diagrams that describe what the software is required to do

(9:137-142).

The second subactivity, that of design, is concerned with the structure of the pro-

gram, independent of coding concerns. The design stage is important not only to the

development of the software but also is critical for the maintenance of large software sys-

tems. Two methods currently in use are object-oriented desiga and top-down design. Ob-

ject-oriented design (OOD) creates a model of the real-world problem and then maps it into

7

the solution space. It is a descendent of data-structure oriented design where appropriate

data structuras are determined before any function generation begins (2:47-50). OOD does

not require that the designer map the real-world objects into pre-defined structures, rather,

it allows the creation of abstract data types. Only after the operations on those objects are

defined does the creation of implementation details begin (9:357-358).

Schildt recommends a top-down design approach based upon levels of functionality

rather than levels of objects. Using this method the designer starts with a general descrip-

tion of the problem and then works downward, gradually adding specifics. The first mod-

ule designed should be at the highest level of functionality (10:835-837).

The third area in software engineering is that of implementation. One very popular

method is incremental testing, made possible by the proliferation of interactive terminals

and personal computers. In incremental testing the developer builds the software little by

little, testing as development progresses. This method has a distinct advantage over that of

batch submission in that errors are caught while they are made and are therefore easier to

track down, resulting in a reduction in the debugging time required (11:881). Booch ad-

vocates bottom-up development because it promotes the creation of shared elements or

tools (2:390). When coding, Johnson recommends that the problems be first modeled as

algorithms in order to avoid the distractions caused by attention to details required when

writing correct code (6:121).

The final phase of software development with respect to engineering aspects is that of

testing. Testing can be divided into two types - black box and white box. In black box

testing the one conducting the test is not concerned with the inner workings of the soft-

ware. Test cases are sets of input values that are expected to produce certain outputs.

Normally, the test cases are detenined by the creation of both valid and invalid equiva-

lence classes. The concept can be taken one step further by using values that are on the

8

-

boundary between valid and invalid input, (this method is sometimes referred to as bound-

ary value testingX9:485-486).

White box testing, o. the other hand, is concerned with the operation of the internal

structure of the programs. Test data is chosen such that all control structures within the

code are considered. White box testing therefore requires that all paths through the pro-

gram be tested. Obviously, this method presents logistical problems due to the combinato-

rial explosion of the number of paths through a large program (5:999).

Howden recommends a functional approach to program testing. He suggests that a

program be thought of as a collection of interacting functions, where a function is defined

as a set of operations that transforms data. This method requires that the programmer or

whoever conducts the test have knowledge about three areas related to the program. First

of all, as in black box testing, there must be knowledge of what outputs values are expected

from a given set of inputs (input-output). Secondly, there must be knowledge of the

proper sequence of function calls (trace). Finally, it must be known which pairs of events

cause specific data transformations (interface) (5:997).

In functional testing all functions in the program must be identified and tested. Fur-

thermore, all combinations of statements within the function must also be tested. The

functional test data should include extreme and non-extreme cases tailored to find faults in

the constructs that make up each function. The big advantage over traditional white-box

testing is that not all paths in the program must be tested separately. Rather, each function

is tested individually, thus avoiding the combinatorial explosion of test cases mentioned

earlier (5:999).

Dtaba Considerations. In Adams' thesis a study was made concerning the type

and availability of a data base management system (DBMS) that was applicable to the pub-

lic domain and educational environments. Because much of his work parallels this effort

some lessons can be learned concerning which direction to take. Adams' study found that

9

it was better to develop a simple original design rather than to implement an off-the-shelf

package. One reason is that existing packages are more powerful than really needed and

therefore consume an unnecessarily large amount of the memory resources of the com-

puter. Another reason is that procurement of such a system would cause logistical prob-

lems due to copyrights and licensing requirements (1:2.2-2.4).

ImpRIennaion of Cahics. To guide the philosophy of the graphics design, the

work by Johnson provides a useful framework to apply to the development of the graphics

software for this system. Johnson divides a graphics oriented program into three

"worlds". The first such world is what he calls the "world of control" which provides the

means to alter the program flow. The editing and selection activities are examples of this

environment. The second "world" mentioned is the "world of reals" or floating point

representations of locations and attributes. The third and final realm is the "world of dis-

plays" where all numbers are of type signed integer, suggesting that there may exist a map-

ping from the world of reals to the world of displays but not vice versa (due to round-off

errors). Locations and attributes are presented to the graphics hardware in the world of

displays (6:40-41).

Human-Comougte Interface. The Adams' study iterates some basic rules concerning

the development of the human-computer interface. These rules all suggest that the useful-

ness of a software package is strongly dependent upon the user's perception of the ease of

its use. The emphasis must be placed on keeping the user motivated. There are a number

of features explained in the study that apply to this project. Such features are the use of the

"mouse" as the preferred screen manipulation method, the inclusion of on-screen directions

that supplement the user's manual, and such built-in features as confirmation of program

termination before saving files. (1:3.12).

Carroll and Mazur conducted a study of first time users to a new computing en-

viroment. They found that novice computer users fear that improper actions may some-

10

T ___...... _ -... .mL r..o.I ItA

how damage the software or hardware. Also, most users new to a program or system will

try to avoid reading the documentation. The new users typically tried to go it on their own

only to later become frustrated and begin skipping around in the manuals hoping to find the

answers to their problems.

The study produced some recommendations concerning the writing of programs.

First of all, the writer should pay attention to the level of expertise of the user. The in-

structions should be short and not too regimented. Also, it is wise to avoid the inclusion of

positive or negative reinforcement messages within software. If taken out of context or re-

peated, the messages can become annoying. Error shielding is a term used to describe the

amount of built-in protection in a prograr. "Overshielding" occurs when the software at-

tempts to anticipate the user's improper actions and then invisibly makes corrections. The

user becomes confused because the outcome of an action did not correspond to the

(erroneous) input. (The machine made the change without notifying the user). The oppo-

site end of the spectrum is "undershielding", where the user is allowed to go ahead and

make mistakes with no action being taken. The programmer should also avoid error mes-

sages that are too general. The error messages should be comprehensive and all at the same

level. Finally, the use of "cute" phrases should be avoided because the novelty of such

messages soon wears off.

As far as terms and language in general go, one should avoid arcane labels. For ex-

ample, the substitution of "fixed disk" for "hard disk" may be more accurate but it is not the

commonly accepted term. Labels and commands should be simple and to the point. Terms

like "save", "close", and "print" are not easily confused and they adequately describe the

actions to be taken. In regard to the use of a mouse, the programmer should make sure that

the mouse sensitive areas of the screen are large enough to be .asily selected. One should

assume that the user is not experienced in working with a mouse. Finally, good software

should include provisions to undo actions taken in error (19:36-46).

[II

iSuimm. The purpose of this chapter was to relate this thesis effort to previous re-
search. The preceding paragraphs attempt to sunmmarize the body of literature investigated

i and gives some insight into the approach taken in this work. The intent is not to follow a

predefined path but to choose a mix of the best methods.

.11

11

A,

iIII. Network The

This chapter will present the analytical model that was mapped into the software

solution. It is important to note that a majority of the effort was put into the design and im-

plementation of the user interface, while implementation of the networking algorithms was

relatively straightforward. Consequently, other methods of analysis may be implemented

without much difficulty using the interface developed in this work. This subject will be

discussed further in the sections on design and recommendations.

This chapter does not attempt to provide the detailed development of the queueing and

network theory behind the equations used. The reader is referred to Tanenbaum (2) and

Kleinrock (7) for more depth if needed. The focus of this chapter is on what assumptions

have been made and how they affect the accuracy of the analysis. It also presents an

explanation of the various equations selected for implementation into the software solution.

Networks. f M/M/L Q ues

Network Moe. Before discussing the theory that drives the problem-solving al-

gorithms of the software, a discussion of the specific type of networking problem is in or-

der. The network to be modeled consists of two basic elements: switching processors and

transmission lines (2:7). These elements are manipulated as nodes and links, respectively.

Each node receives traffic from two sources: the incoming links connected to it and/or the

host computers that access the network through it. Messages are made up of a series of

packets of varying length. Figure 1 shows the translation from the physical network to the

abstract model for analysis.

The routing algorithm used is static. From the standpoint of an originating node, all

messages intended for a specific destination will use one or more predetermined sets of

connecting links. No routing decisions are made at intermediate nodes along the mute

13

L - -i O 1 II" ' m m n m m mnmmmn.n m mmmn~ ~.,.

Ic

LIN

PROCESSOR

LIN

taken. A node accepts all packets as they arrive into its infinite queue. If the packet is

destined for some other node it will be forwarded along the link specified by the packet's

routing as soon as the link is free. This type of network is sometimes referred to as a store-

and-forward network (2:8).

In order to develop a solvable mathematical model, several simplifying assumptions

are necessary. First of all, the number of arrivals during any interval of time is an

independent random variable (4:50). The steady-state arrival of packets therefore consti-

totes a Poisson process and is described by exponential interarrival intervals. This as-

sumption appears to be fairly accurate for large numbers of independent customers. As far

as the processing of the packets by the node, the exponential service time assumption also

holds as long as service times are not too long. Stated another way, the distribution of bits

per packet is also a Poisson process (2:58). Therefore, given exponential interarrival inter-

vals and service times and the added condition that each link can process only one packet at

a time, the M/M/1 queue serves as an adequate modeL Propagation delay, check sum cal-

culations, errors, retransmissions, and control overhead are all disregarded.

The next problem is how to treat the interconnection of the multiple Markovian

servers that make up the communications network. Given that message service (or packet

length) is a Poisson process each link can be considered as just another stream of arrivals to

the node - a parallel combination of arrivals to an M/M/1 queue. Burke discovered that

multiple Poisson arrivals can be added together and then treated as a single large Poisson

process with its mean arrival rate equal to the sum of the rates of the arrival streams feeding

it. The weakness with applying this idea to the model is that there is an assumption that

packets are discarded and then regenerated at each node, with new packet lengths being as-

signed according to an exponential distribution. This approximation is known as the Inde-

pendence Assumption and has been shown by Kleinrock to be reasonably accurate (2:63).

In reality each packet usually remains constant in length from its point of origin to its

15

1.

7.

destination. There are exceptions. For example, gateway processors connecting networks

may modify the size of the packets in order to accommodate the different standards of the

interconnected networks.

Network Parameters. Having described the type of network to be modeled, the next

step is to determine the parameters of interest and develop the equations necessary to pro-

vide the analysis. The input variables are shown in Figure 2. From the standpoint of a

Input variables:

traffic for route i (packets/sec)

1
- average packet size (bits/pkt) for network

c 1 : link capacity in kbps (kilobits per second)

gC : service rate (packets/sec)

X, •average arrival rate (packets/sec) for link i
(Sum of all traffic y using the link)

d cost per kbps (Normalized to 1).

FIGURE 2 : Network Parameters (Input)

user on the network, one parameter of obvious interest is how long does it take to route a

message through the network. The answer requires a calculation of the mean queueing de-

lay. To calculate delay the average arrival rate of the packets must be known as well as the

average packet length. Also the taffic between each pair of nodes is needed since each

route places additional load on the links that it uses. The network must be in a steady-state,

16
I

I I

I

that is, the number of packet arrivals to each link must be less than the average rate of ser-

vice at the link. The number of arrivals includes all traffic that uses the link as determined

by the routing table. The ratio of packet arrivals to rate of service is another parameter of

interest known as traffic intensity and gives an indication of the amount of operating head-

room of a particular link. These parameters are summanrized in Figure 3. By determining

the amount of delay and traffic intensity at each link, the behavior of the network can be

visualized. The results of the calculations can be tabulated and then comparisons can be

made.

There is an important parameter of interest that relates to the operation of the network

as a whole, and that measurement is the average delay for a packet entering the network.

Although this measurement is only an approximation it is nevertheless a way to monitor

general system performance. The next section will discuss how the average packet delay

for the network can serve as a constraint for controlling network costs through flow and

capacity assignments.

Figure 3 shows the formulas for average link delay, traffic intensity for a link, and

the mean packet delay for the network. The reader is referred to Tanenbaum for a detailed

development (2:62-65).

Flw And Camity Assignment

Flow assignment is largely determined by some type of heuristic process and will not

be mentioned in detail here. What is important is that some type of routing algorithm (only

static is considered) is needed to assign traffic in the first iteration of the network design.

One example of such a heuristic is the shortest path algorithm. In this method routing

between any two nodes is determined by a combination of shortest geographical distance

and the amount of traffic already assigned to the links on the net. After all routing has been

accounted for, the design has a beginning topology to which the analysis can be applied

17

I

Calculated parameters:

T 1 average delay for link i

m

Y= 1 sum of all traffic on the net
i-|

m
X= i sum of all link arrival rates

P, traffic intensity for link i

T = : mean packet delay for network
Y

m
2: -- optimal capacity

c + I j_"____ : for link i based on
1 yT Xd, delay constraint T

FIGURE 3: Network Parameters (Calculated)

Using an iterative process of routing assignment and network analysis the design can be

optimized. After a proposed topology has been determined by whatever means, the next

step is to calculate the parameters mentioned in the preceding paragraphs. The results wili

probably show that some links on the network are more heavily used than others which

suggests that thee is inefficiency in the design. A heavily loaded link will introduce a large

delay component while a lightly loaded link may be wasting resources. The last equation

18

listed in Figure 3 provides a means to more efficiently assign capacities to the links, subject

to an average packet delay that is acceptable. The equation assumes that there is a linear

relation between cost and kbps capacity. The results are assuming continuous capacities

and should be adapted to the reality of discrete capacity assignments. The reader is referred

to Kleinrock for the detailed development of the minimization technique used (2:73).

Summa

The material presented in this chapter as an overview rather than to attempt the pro-

vide all of the detail necessary to develop the network queueing models. The goal was to

present the set of equations that were translated into the number crunching portion of the

software. In Figure 3 these equations are summarized and will be referred to in the soft-

ware development discussion which follows.

19

IV. Software Develonni

Rcuirements
Requirements were determined largely by the thesis advisor and other members of the

faculty who regularly instruct students in the computer network sequence. It is important

to note that not all of the requirements were determined before the development began.

During the course of the work capabilities were discovered and new ideas were explored on

almost a daily basis. Because a conscious effort was made to adhere to software engineer-

ing principles, the changes in requirements were implemented without major disruptions.

General Reuirements. One of the main requirements was that the software be

compatible with computers in the Digital Engineering Laboratory. The Z-248 micro-

computer with Enhanced Graphics Adapter (EGA) display and Microsoft compatible mouse

was the targeted environment. These machines fall into the general category of IBM com-

patibility which has a large installed user base. Because the software developed is part of

the public domain, it can be copied freely and run on any machine having the same

capabilities.

Program flow was determined to be as follows: the user first must create a visual

interpretation of the network to be monitored. In most simulation applications, this actvity

requires a two-step approach where the user must create an abstract model independent of

the software and then translate this visual model into a set of statements that describe the

system. In this project, however, the requirement was that the development of both the

visual representation and the description of the network be a one-step process.

The drawing produced must show both the switching processors on the net as well as

the interconnecting links. Each of the links must be assigned a data rate capacity in kilobits

per second (kbps). After the network is created and edited to match the problem, there

20

II

must be a means to provide the input of messages into the network and subsequently route

the messages to predetermined destinations. The routing is static, that is, all routing for

packets arriving at each node is determined before it enters the net. The alternative is dy-

namic routing where each node must make decisions as to which link to route each packet

as that packet is received. In order to provide additional flexibility in the analysis, the traf-

fic arriving at each node must be in packets per second with the packet length being a vari-

able quantity in units of bits per packet. The end result of the graphics portion of the soft-

ware must be a visual representation of the network with assigned link capacities and a

routing table indicating traffic throughout the net.

Concerning the network analyzer segment of the software there are several parameters

developed in the network theory portion of this work that provide performance measures

and are the objectives of the simulation. The parameters desired for each link are average

delay, traffic, traffic intensity (ratio of traffic to capacity), and optimal capacity assignment

based on an average delay constraint. In addition, average packet delay for the entire net-

work is needed. These parameters were discussed at some length in the preceding chapter.

User Interface. The human-computer interface is difficult to evaluate and almost im-

possible to quantify. Nevertheless, there were some general requirements concerning the

link between the user and the analytical engine of the software. Most importantly, a short

learning curve and ease of use were the dominating factors in the design of the user inter-

face. More specifically, the network components must be displayed rather than described

P by some obscure simulation language.

The use of a mouse to operate the application was determined from the onset to be

more desirable than the keyboard for creating graphic images; however, some actions such

as data and text input are only implemented in a reasonable manner by using the keyboard.

The decision was made that the mouse be the primary input device with use of the keyboard

21

I

I !- restricted to input of text and numerical data. As a general rule, the keyboard was to be

used only when the mouse could not perform the same function.

The process of inputting commands should be as passive a process as possible.

Menus and context sensitive prompts should be used whenever needed to let the user focus

his concentration on the purpose of the software rather its operation. Readily available on-

screen help displays with concise command explanations also help satisfy the user-friendly

interface requirement.

The final "look and feel" of the application was not defined as a requirement but

rather evolved during the design and implementation stages. The goal was to make an ap-

plication that was visually interesting to use. More about this will be mentioned in the dis-

cussion on the implementation details.

Qher Genel Rguire ments. There were other requirements concerning the op-

eration of the application. It is desirable to have the capability to save the drawings, routing

tables, and analytical results to disk for later retrieval. The database itself must be of a dy-

namic nature, that is, the memory and disk requirements should be determined by the size

of the data (static arrays are to be avoided). This requirement allows network files to be

limited only by the amount of memory available.

Finally, the design of the software must be easily upgradable; it must be constructed

such that future improvements are facilitated by the structure of the program. For that rea-

son, particular attention was given to adherence to accepted software engineering practices.

This requirement infers that sometimes trade-offs are made between speed and modularity.

Function or procedure calls reduce execution speed due to the overhead of transferring

*control to another segment of code (saving registers, status, program counter addresses,

etc.) but make the source code more readable than long stretches of (faster) in-line code. A

general rule was adopted that if a single function exceeded one page of code, it was proba-

bly too long and should be divided into smaller functions.

22

I

It was expected that throughout the development of the software, changes would be

requested by prospective users. Modularity of the design as well as other well accepted

software engineering practices greatly enhanced the modifiability of the code. During the

coding phase several suggestions were indeed made by faculty members and colleagues in

the lab. These suggestions were, for the most part, implemented without greatly affecting

the rest of the code.

Summary. The set of requirements as outlined defines what the application is to ac-

complish. The overriding objective was to develop a tool that could be quickly learned,

was interesting to use, and performed the job for which it was intended.

Desgn
The design process was divided into three major categories. They were 1) the cre-

ation of the objects and their operations, 2) how the data was structured and 3) program

structure.

QRMons ga th Network Obits. Before developing the database it was first nec-

essary to determine the objects and their operations. In a vector graphics design approach

such as the one used in this project, images are not stored as collections of pixels (picture

elements). Rather, each object is given a set of attributes that is accessed each time the ob-

ject is redrawn. Each collection of attributes can be thought of as a set of directions for a

set of tools. For example, in this work one of the objects is the network node, and each

node must have a set of attributes that uniquely describes it. Each node is defined simply

by its position on the x-y plane of the screen grid along with a single character identifier.

Given the above information the node can be reconstructed using some type of routine that

can draw and fill a graphic primitive and then label it. All elsL that is needed is a reference

or pointer to its position in memory so that the program can access it.

23

There were three major objects created. As just mentioned, one of the objects was

determined to be the network node, which corresponded to the message switcher of the

physical network. The other objects are the data link (transmission channel) and the route

(static routing description). The link is the basis for the analytically intensive operations of

the application and is described graphically by its starting and ending points on the screen

grid. Its other attributes are the parameters as mentioned in the chapter on network theory -

link capacity, traffic load, traffic intensity, average delay, and optimal capacity assignment.

The calculations of these parameters are additional operations on the link object. The third

major object is the route, which is composed of an ordered set of nodes and a measure of

the traffic routed between the endpoints.

When discussing the vectored approach to the graphics design the question arises as

to what type of drawing tools are needed. The software development therefore temporaily

departed from the usual sequence of completing the design before considering implemen-

tation details and focused on developing a set of tools to perform the low-level graphics. In

order to establish the graphics potential of the application some time was spent in the early

stages researching methods of producing primitives (circles, lines, rectangles, etc.). AFIT

has developed in-house a set of routines that perform these tasks. These routines were

written to be compiled with either Microsoft C or C86. The other environment considered

was the Turbo C compiler, Version 1.5, which at the time had only recently been released.

The Turbo C environment offered a rich set of graphics routines that also provided all of

the functions needed. Due to the author's familiarty with the package along with other

factors the Turbo C system was selected, although either environment could have been

used. There was also no specific requirement that the software be written in the C

language, but one of the personal objectives of the project was for the researcher to become

more proficient in C programming. There are other development environments for the PC

microcomputer that provide at least the same level of graphics support.

24

1I

f ~Daaase A linked list was selected to represent the objects in memory. This data

structure supports the creation of arrays of variable sizes. Memory is allocated as each ele-

ment is added to the database and freed each time an element is deleted (dynamic al-

location). It also allows data to be inserted in order and deleted without manipulation of the

entire file. As elements of the list are deleted or created only a few pointer updates are

necessary. A linked list may be singly linked, with a pointer to the next element, or doubly

linked, with pointers to both the previous and the next elements of the array. The double-

linked list was chosen because it can be searched in either direction, and it has the added

security of being constructed either forward or backward using separate sets of pointers. It

turned out that a single linked list would have worked equally as well and would have also

had the advantage of consuming a slightly smaller amount of memory (2 bytes per element

due to one less pointer per element).

Figure 4 depicts the structure of the data base used for the network. There are three

data elements corresponding to the sets of nodes, links, and routes. The node and route

structures were relatively simple, having few elements. Note that the route structure has no

graphical information since all of the graphics details of the network are defined in the links

and nodes. The link element contains most of the network information and is largely a

result of the mapping of the parameters presented in the chapter on network theory.

oolevel D ign. Figure 5 depicts the original highlevel design. The highest level

units are an executive module ('"Topmenu") and three subordinate units ('Drawnet",

"Defroute", and "Analyze"). The executive module handles filename selection and pro-

vides a menu to give the user the choice of which of the three lower modules to run. The

solid lines show the lines of control as well as the hierarchy of the design while the dotted

lines show that control can be passed freely among the three main modules while

manipulating the same set of files. The modules shown subordinate to the three main

25

k . .

First linked list

Intermediate Elements

Last entry linklabel

priorbeginx
beginy
endx
endy

nodelabel path capacitys
traffic

xcoord traffic krt
ycoord next detraye
next priorrh

F prior Route optcap

Node Daasrcuenext
DaaData structure prior

Link
Data structure

Figure 4. Data Structure Design

26

DrawnLoaDeroute

Figure5 .Strctue.Cart..Hgh.eve.deig

Drawode reatro27

modules were created to handle tasks that were determined to be necessary early in the de-

sign. More activities were created during the implementation phase.

The three main modules divide the operation of the application into three functional

units. The first module, "Drawnet", is concerned with actually creating and editing the

network to be studied. Like the top level executive module it too is a selection and deci-

sion point. Subordinate to the "Drawnet" executive are several modules that perform the

major operations on both the graphical elements and the files. The module names were

chosen so as to be self descriptive. At the same logical level as 'Drawnet" is the "Defroute"

module and its purpose is to create and edit the routing matrix. Together "Drawnet" and

'Defroute" perform all of the graphics-oriented tasks. The third module, "Analyze", is the

number crunching part of the application. It applies the network theory formulas to the

graphically created database.

Lowr L&vd Functions. Subordinate to the module "Drawnet" (Figure 5) are defined

six activities that divide up the process of creating and editing a network drawing. First of

all, the disk files that contain the data must be either created or opened if already available.

The "Loaddwg" module performs both functions by accepting a filename and then loading

the file from disk or, if not already existing, by creating a new file. The file is transferred

to memory by successively allocating storage for each data structure and then transferring

the data from disk. The process continues until the EOF marker is read. It provides two

types of error handling. The first "error" is when the file is not found in which case it sim-

ply creates the file as mentioned earlier. The second error condition is when there is in-

sufficient memory available to load the data, in which case an out-of-memory error is dis-

played and control is returned to the calling module.

The "Savedwg" module reverses the "Loaddwg" process by transferring the data

from memory to disk. In order to transfer the data it must first open the disk file. If for

28

A,

some reason the disk file cannot be found, an error is displayed. All data in memory re-

mains available to the application after the save.

The remaining modules manipulate the elements of the drawing. First of all, the

"Drawnode" module when selected reads the mouse position and waits for a button click.

When the button is pressed, control transfers to a routine that draws the node (in whatever

form later decided upon by the implementation) and inserts the node data structure into the

database in alphanumeric order. The module must also prompt the user for a single char-

acter label and then correlate the label with the node's data structure. The reason for the

single character node label will become clear when the routing module is discussed. When

creating the structure of the node, pointers to the previous as well as the next element in the

database are added.

The other major drawing element is the link and is also created using mouse input.

The link module connects existing nodes and prompts the user for the capacity of the

transmission line it represents. In its original form the module formed only full duplex

links, but this task was modified later on during the implementation to include simplex

links. At this point each link consists of only the endpoints, the position on the screen, and

its capacity in kbps along with pointers to the previous and next elements in the link array.

After the link is created, its structure is inserted in alphnumeric order in the link data array.

Any useful drawing editor must provide the capability to erase objects. This design

provides a "Delete" module which serves as the executive for the modules that erase the

nodes and links. More will be mentioned about the erase functions in the section on

implementation.

The final submodule in the design of the drawing editor is the "Printdwg" module and

provides the ability to make printed copies of a network drawing for later reference.

The second major module discussed is "Defroute", or the routing editor. It controls

five submodules (Figure 5). First of all, the route data structure is similar in construction

29

I

I|

to the link and node data structures and the same file operation routines can therefore be

adapted to routes. These activities are covered by the 'Loadroute" and "Saveroute"

submodules. Also, as in the drawing editor, there must be a method of creating the routing

table and if the requirement of using the mouse as the primary input device is followed, a

route should be created by pointing and clicking on each node along the desired route. This

ability is provided for in the "Createroute" module. It also creates a character string made

up of the labels of the nodes that it contains. This string is represented in the data structure

by the "path" element (Figure 4). The module must also allow entry of route traffic, either

in the forward direction or in both directions. One distinction between "Defroute" and the

drawing editor is that here one is working with two things, the network drawing and the

routing table, rather than the network alone. Consequently there must be a means of

viewing the routing table either by displaying both the network and routing simultaneously

or, better yet, by providing a second display that is called up smoothly and quickly in order

not to disrupt the route creation process. The "Viewroute" module is reserved for this ac-

tivity. Finally, as with the drawing editor, there is a module that deletes entries from the

database ("Delroute").

There is one primary module remaining to be discussed - the "Analyze" module

where, as mentioned earlier, the mathematical equations are implemented. "Analyze" ac-

complishes this by iteratively calculating the network parameters whenever variables are

changed. In Figure 5 the reader will see that this module controls several subordinate

functions. As in the other primary modules, there is a unit to transfer the data from disk to

memory as well as another module to save the data to disk ('oaddata" and "Savetable").

The remaining units have no analog in the other two primary modules and each unit will be

discussed individually.

Before the analysis of the network can take place there must be a provision for enter-

ing the average size of the packets in the net. "Getpktsize" provides this ability as well as

L 30

Iimlm mm mmii mlm mm ma mllmJll m • ii

the option to modify the packet size later if desired. This module is automatically called

when the Analyzer is invoked and no packet size has yet been entered.

Because there are several submodules with separate sets of instructions for the user to

control it seems that some type of on-screen help is appropriate here. The "Analysishelp"

module is intended to provide an on-call list of directions that correspond to all of the activ-

ities in the "Analysis" module. By using an on-call help function, the commands displayed

on the main module are kept to a minimum of characters, thus freeing up the screen for the

analysis results.

Again referring to Figure 5, the "Changecap" module allows the user to modify the

capacity assignment of any link in the database. Using the formula given in Figure 3 for

optimal capacity assignment, the "Opt-Capacity" module calculates the optimal capacity for

all of the links upon input of an average network delay constraint. The calculated optimal

capacities are then entered into the link database. Carrying this line of calculation one step

further, the "Replacecap" module provides the user with the capability of replacing all of

the capacity assignments for the links with the optimal capacity assignments as calculated in

the "Opt-Capacity" module. The average network delay can be viewed at any time by

invoking the "Showdelay" activity.

The one remaining module yet to be discussed is "Altroute" and will be treated dif-

ferently. The intention of this module was to provide a path to an exper. system that looks

at the present state of the network and by using some type of intelligent algorithm, makes

suggestions for alternate routing. This module was given a separate compilation unit

during the coding of the application.

31

Ezinmen As mentioned earlier in this chapter, the Turbo C development system

was selected to implement the design. For the purposes of this project the Turbo C version

1.5 compiler provided most of the capabilities needed with the major exception of the

mouse drivers. The Z-248's in the Digital Engineering Laboratory --e equipped with Log-

itech Mice which are Microsoft Mouse compatible. In order to satisfy the requirement that

the application be mouse driven a search was conducted in order to find the driver support

needed. AFIT has developed in-house a set of mouse drivers written in C and assembly

code. These drivers were originally written for the Mouse Systems Mouse and were there-

fore not selected.

Fortunately, there are several libraries of C functions available from bulletin board

systems (BBS) and the national on-line computer services. Several libraries were evaluated

before deciding upon the CXL Extended Library version 4.0. The CXL library seems to

fill in many of the gaps in the Turbo C library. Most notably, it provides extensive mouse

and windowing support. Turbo C 1.5 supports windowing but at a much lower level and

is therefore more difficult to implement than the CXL functions. The CXL licensing

agreement allows use of the code without paying a fee as long as the work is for non-com-

mercial purposes. A copy of the library has been submitted along with the source code for

the simulator.

The environment used for this thesis effort was a somewhat customized version of

the off-the-shelf package. First of all, the BGI graphics driver file "EGAVGA.BGI" is

usually required at run-time for all EGA or VGA graphics routines written in Turbo C. For

this project, the driver was integrated directly into the graphics library of the C compiler by

first converting it to a ".obj" file using the special application BGIOBJ.EXE that comes

standard with the Turbo C package. Then the TLIB.EXE application was used to add the

new object file to the Turbo C graphics library file. If this conversion is attempted, the

32

programmer must make provisions for having the device driver integrated directly into the

graphics library by modifying the source code that initializes the graphics system. The

purpose for integrating the graphics driver was to simply eliminate the extra file needed at

run time.

Both the graphics and CXL library files were integrated into the main library file

(CS.LIB) of the Turbo C package. The CS.LD library file contains most of the general C

routines and supports the "small" memory model. The small memory model, which limits

the code segment and data segment of the code to 64K each, seemed to work well. It sup-

posedly produces faster executable code by making all jumps intrasegment.

Some mention should be made of display modes on the PC. The EGA card operates

in two modes - text mode and graphics mode. In text mode all screen writes use the built-

in character generating routines of the ROM BIOS. Resolution is 80 characters wide by 25

characters high. The toplevel and analyze modules were written using this mode. The

graphics mode is a direct pixel manipulation of the screen and allows more flexibility and

resolution. Resolution is 640 pixels wide by 350 pixels high. Modes can be mixed to a

limited extent. The drawing and routing editors both work predominantly in the graphics

mode with a top line of text mode characters added for instructional purposes. On ma-

chines that do not support separate floating point operations (using the 80x87 chip) the

drawing of arcs is a computationally expensive operation. Thus the decision to avoid

drawing circles and arcs was made early on. An exception was made when the use of ar-

rows to indicate traffic direction was implemented. Each arrow was composed of either

one or two filled arcs, depending on its orientation.

Approximately 2000+ lines of code were developed in this work and with the addi-

tional 3000+ lines of header code the total cam to over 5000. Advantage was taken of C's

ability to support separate compilation units by dividing the source code into three separate

files. One file supported all of the graphics and implemented the "Drawnet" and "Defroute"

33

modules (See Figure 5). The second file implemented the "Analyze" module while the

smaller "Altroute" module was separately compiled in order to facilitate future develop-

ment.

Methods. In the coding process a technique of iterative coding and testing was used.

Beginning with the low level graphics functions, dummy executive programs were written

to control logical grouping of functions. Small sections of code corresponding to the mod-

ules in the structure charts as shown in Figures 6 through 9 were written and tested for

functionality. These structure charts were developed from the original chart shown in Fig-

ure 5, and resulted from the finalization of the design during the implementation process,

thus providing a de facto test of the maintainability of the software while still under devel-

opment. Because of the experimental nature of this project, following a rigorous design

process in great detail before beginning the implementation was not possible. In the au-

thor's opinion, if development had strictly adhered to the classical sequence of requirement

definition before design and design before implementation, the resulting software would

have been more limited in its capabilities.

Due to the hardware intensive nature of this application, many of the functions do not

fall within the proposed ANSI standard for the C programming language. The code did,

however, make use of the ANSI recommended practice of function prototyping in order to

enforce stronger type checking than that provided in Kernigan and Ritchie's original im-

plementation of the language. Function prototyping checks all parameters that are passed to

functions. All of the passed parameters must agree with the original function declaration

prototype.

Global variables were implemented but kept to a minimum. Only those variables that

were required access by a very large portion of the code were declared as global. The

database and filename as well as the mouse status are examples. The reader is referred to

34

main

loadroute setgraph preanalyze drawnet def route

Figure 6. Structure chart - High level

35

loadroute

savedwg]pitw

s averoute delnode dellink

de-links refscrn

Figure 7. Structure chart - Network editor

36

refscr- bidtabie averoute savedwg

Figure 8. Structure chart - Routing editor module

37

analysishelp

changecap

dis. pay eplceap getktsze opt...capaci1ty

Figure 9. Structure chart for analyzer module

the source code available from the department of Electirical and Computer Engineering in

the School of Engineering at AFIT for specific details.

Figures 6 through 9 depict the final structure of the application. Comparisons are

now made with the original design of Figure 5.

JIevel, Figure 6 shows a modification of the original design in termsof flow of

controL Most notably the drawing and routing table loaders are called from the toplevel

38

! iI

module in order to provide the flexibility of going directly to any of the three major mod-

ides (shown in boldface type). The analyze function is displayed as being subordinate to

the drawnet and defroute functions but in actuality it can call either function under certain

conditions (As explained in the User's Manual included in the Appendix).

The preanalyze function is simply a test for the existence of an entry for packet size.

If a packet size has already been defined program control transfers directly to analyze.

Otherwise it prompts for and receives user input for the parameter.

rawing Edi. Figure 7 depicts the implementation of the drawnet module. It is

left relatively intact with the exception of an additional module. "Quitroute" was added to

check for updates in the routing table before control is transferred away from the drawing

editor. It decides if changes have been made, saves the edited route if so instructed using

"saveroute", and then returns control to the "drawnet" executive.

The "delete" module has two subfunctions that delete either a node or link. The

"delinks" function performs the actual mechanics of deleting a link and is used for both

"delnode" and "dellink". It is called by both to provide the feature of having a node dele-

tion automatically invoke the deletion of all links that are connected to it.

Also down in the hierarchy is the "refscrn" function. It is called by several higher

level functions to redisplay the database after changes have been made, redrawing all of the

network graphic components by cycling through the link and node data structures.

Routing F&=. Reference Figure 8. The routing editor keeps all functions defined

in the structure design drawing and adds more detail. "Savedwg" is necessary in order to

check for updates to the drawing before leaving the module. Also, the "refscrn" and
T

"saveroute" functions are called from this module as they were from the "drawnet" module.

The only new component is the "buildtable" function which creates and updates the display

of the routing table in the background page of screen memory as routes are added or

39

Ir

deleted. The memory resident quality is useful in that the routing table can be viewed

virtually instantaneously from the routing editor by using the viewroute option.

Ana ira. Figure 9 shows the final structure chart for the third module. By com-

parison with Figure 5 one can see little modification from the original design. The one ad-

ditional function called from the executive module is the "display" function which writes

the results to the screen in table form. Subordinate to the "savetable" function is the

"savetotext" module which creates an ASCII file copy of the display.

Subordinate to the "altroute" module are "cridink" and "longroute". "Critlink"

searches for the link that has the greatest traffic intensity. "Longroute" searches through

the route database and displays all routes that contain the link returned by "critlink". It also

computes and displays the sum of all delays along each flagged route.

Teting

Bak D2&e Istng. Black box testing was performed by first determining the equiv-

alence classes and then devising test cases. The test cases covered both valid and invalid

equivalence classes using random and boundary values for inputs. Appendix B lists the set

of equivalence classes and test cases used.

Funcionl ing. Functional testing was performed (a subset of exhaustive white

box testing) during the iterative coding and testing process of implementation. New tests

were performed with each addition of a logically coherent section of code.

Comarisons IQi= Simulations. The example from the Tanenbaum text was

modeled using both this simulator and COMNET 11.5 from CACI (8). COMNET is a

telecommunications network simulator that uses adaptive routing rather than static routing.

It also does not assume independent links for end-to-end perormance measures. Its results

always include startup and steady-state values rather than steady-state only as in this

pro*L

40

tIC

Eield Teasin d Evation. Members of an introductory class in computer net-

works tested and evaluated the software as applied to a networking problem. The software

was judged mainly on the quality of the user interface and its effectiveness as a learning

tool. Participants were asked to complete an evaluation form and make general comments.

O Tests. The capability to handle large networking problems was tested by cre-

ating a network with 60 nodes and 106 links and then observing how the program handled

node and link deletions as well as screen refreshes. Also tested was the consistency of the

drawing elements as a function of their orientation on the screen. This test was performed

by drawing links at approximately four degree intervals radiating from a central node in a

full 360 degree sweep. Examples are included at the end of Appendix B.

41

Si~-

[

V. Resuts dW isc

The application developed in this study was the result of a process of discovering

capabilities and requirements and then applying the software development process to reach

the solution. The reason behind any perceived success is attributed largely to modularity of

design and quality of the development environment.

There were some aspects of the study that were more challenging than others.

Getting started was a slow process due to the large selection of development environments

available. Much time was spent writing and testing small drivers and routines that manip-

ulated the color graphics and the mouse; however, once these low-level issues were re-

solved the network algorithms were implemented without a grat deal of difficulty. The

Turbo C compiler (the environment finally decided upon) seems to produce reasonably fast

executable code without having to resort to assembly language routines. It is not known

how well the product may have turned out if some other set of tools had been used.

As a side note, the entire application was created without the use of a "goto" state-

ment; however, many of the functions were terminated by the use of another function call,

which was often of a recursive nature. This method of coding provides the power and

flexibility of the "goto" statement without creating the readability problems often associated

with it.
IIk

DB k Bx and Euncd~nd I=. In the opinion of the author, testing probably

serves its most useful purpose when modifications are done to an existing design. As

mentioned earlier many requiements were determined and modified throughout the devel-

42

iI

II

opment phase of the study. As each set of requirement modifications were implemented,

subsets of the suite of test cases presented in Appendix B were run. Most of the errors

discovered were not of the classical software engineering type, that is to say, data and code

corruption did not appear to any great extent. This result can be attributed to the use of a

structured language along with modularity of the design.

The majority of errors that did appear had to do with graphics issues. For example,

if a certain object on the screen were changed, another object created by some other func-

tion might be affected by being overwritten or crowded. These problems were easily spot-

ted due to the instant feedback nature of the CRT display.

Comparnson with COM I].. The networking problem presented in the

Tanenbaum text was modeled using both this simulator and the COMNET package

(8)(1 1:63-64). Results of both methods are shown in Figure 10. Although the trends are

similar the average delay shown by the COMNET curve is consistently lower. The reason

for the different results is probably attributed to the routing stratagies used. COMNET

implements a routing optimization technique where the routing selected in the example is

somewhat random. Another notable difference in the two methods is COMNET's lack of

use of the independence assumption. In other words, in COMNET a packet maintains a

constant size from origin to destination rather than being repeatedly regenerated along its

route.

It should be noted that COMNET can be considered to be more of a "true" simulator

in that it produces entities and collects statistics. The software presented in this work is

concerned more with the application of mathematical models to various network designs

originated by the user and therefore does not fall within a strict definition of simulation

software.

43

i Me Results. Fifteen students in an introductory course in computer net-

works were given the task of applying the tool to a design problem and then evaluating the

effectiveness of the software. An evaluation form was distributed to each student

500

~ 400 * Comnet

o * ENG Simulator

- 300

200

100-

00

CI

0 1 2

Scale Factor

Figure 10: Comparison with COMNET U.

along with the problem. The students were graded on how well the tool was applied to the

exercise, thus encouraging a serious effort.

Results of the evaluation along with a sample of the form are shown in Appendix

C. As a result of the evaluation the following observations are presented. In regard to

quality and usefulness the tool got good marks. Almost all of the students felt that the

application was easy to learn and use and should be offered as a learning tool to supplement

the lecture series. The major problems were with compatibility issues, specifically, there

was a wide range of responses concerning the requirement for EGA graphics and the

4

mouse. Intuitively, the likelihood that one would have no objection to this requirement is

related to what happens to be the configuration of the individual's personal computer

system. Also, most students would rather use the software on their own systems rather

than the Z-248's in the laboratory which are properly configured.

Another perception of deficiency in the tool was the lack of a capability of being

able to copy files from within the program rather than having to exit, copy the file, and then

return. This feature was simply overlooked in the software design and should have been

included. Students also suggested that the application provide the capability to calculate

total capacity of the network. This recommendation is probably more a result of the spe-

cific problem assigned rather than a general observation.

Recommndations

One of the goals as outlined in the thesis proposal was the possible inclusion of an

expert system that could evaluate a specific network routing configuration and then make

decisions as to alternate routing schemes. This feature was not completed due to the lack of

success in implementing an effective and intelligent search algorithm. The attempts that

were made at implementing various expert system techniques were met with limited suc-

cess. The resulting functions were somewhat unreliable or inconsistent in execution and

tended to degrade the overall quality of the program.

In the source code accompanying this paper a separate compilation unit entitled

"altroute.c" has been reserved for possible future development. As of this writing the

module has the capability to search through the data for the link with the highest intensity

and then identify all routes that contain the link. In addition, the function will sum all of the

values for the average delays of the links that make up each rouze identified. It will then

display each route label along with its coresponding delay sum. The user is next prompted

for a decision as to whether or not the routing table is to be modified. If the user responds

45

"I

in the affirmative control is transferred to the routing editor. The logical extension to this

module would be to go back into the data base and find an alternate route for the one caus-

ing the largest degree of aggregate delay.

Users all seemed to be in agreement that the graphical interface was a strength of the

tool; therefore, it is conceivable that this same interface be used for more sophisticated net-

work models such as those which use dynamic routing or allow for operational overhead

like propagation delay or error handling. The graphics source code (net.c) may be used

with little or no modification for a variety of analytical techniques that could be included in

the analysis module (analysis.c).

In the near term some other modifications are in order as a result of the in-class

evaluation. Most notably is the file copy capability mentioned earlier. Also, a CGA ver-

sion could be developed by using the set of CGA drivers already available in the Turbo C

package (in lieu of the EGA/VGA routines) and then modifying the pixel coordinates to

allow for the reduction in resolution.

46

IMEM

AFIT/ENG Network Simulator

Appendix A:

User's Manual

1 47

AFIT/ENG Network Simulator

User's Manual

AFIT/ENG COMPUTER NETWORK SIMULATOR

Version 1.0

2.4

2.4
~64

0.3

by Ralph Puckett

December 1 988

48

AFIT/ENG Network Simulator

USER'S MANUAL for

AFIT/ENG COMPUTER NETWORK SIMULATOR

System IBM Compatible PC

Requirements EGA Monitor and Graphics card with 256K

Microsoft Compatible Mouse

IBM Graphics Compatible Printer

Ov e rv i e w The simulator is composed of three main modules - a network

network editor, a routing editor, and an analyzer. The first two

require the EGA graphics and mouse, while the analyzer will run

on just about any PC Compatible. The basic flow of the program is

to first construct a network and assign link capacities. After a

network has been defined the user calls up the routing editor to

select routes and enter appropriate traffic levels. With the

network and routes defined in the first two modules the user can

assign a packet size and run an analysis. The analysis is based on

an M/M/ I queue for packet arrivals. Results include traffic,

average delay, optimal capacity assignment, and traffic intensity

for each link as well as average delay for the network. Both the

drawing and the analysis results can be saved and/or printed.

Three different disk files are created when drawing a network:

".nde", ".Ink", and ".rte", corresponding to the sets of nodes, links,

and routes. Also the analysis results can be saved in a ".txt" file

for viewing and printing. A saved drawing must contain both nodes

and links or the analyzer will not recognize it when an attempt is

made to open it again. The routing table and analysis results are

optional.

49

AFIT/ENG Network Simulator

Theoretically, the simulator will allow networks of any size

but as a practical matter the screen size will limit the amount of

graphical data. The software has been tested with as many as 66

nodes and 120 links with no problems.

Gett i ng One of the basic ideas driving the design of this simulator was

Started simplicity of use. A short tutorial which follows should be all

that's necessary to get started.

First, make sure that the following three files are in the

default directory (i.e. you should be in the same directory as the

files or include the executable files' directory in a path

statement):

NET.EXE - main program

EGADMP.COM - EGA printscreen routine

GONETBAT - batch file that loads the above files.

Enter "gonet". The screen print routine will load first

followed by the main routine (Figurel). The program will then

prompt for a filename, which may either be a new or existing file.

If the file is not found, the program will create it. We will create

a set of files named demo, so enter"demo" (wI lthout an extension).

The next window (Figure 2) will display several choices. Since

this is a new file enter 1' to create the network. The program
will enter the graphics mode and enable the mouse (Figure 3).

Displayed across the top are choices that are invoked by locating

the arrow over a box and clicking any mouse button. To get

started, mouse over to the upper left and click on the "Node"

button, then locate the arrow near the upper left corner below the

text and click. A rectangular node will be drawn followed by a
prompt for a label. Type 'a'. The node will be labeled and the

program will return you back to the top of the network editor.

50

AFIT/ENG Network Simulator

I

AFIT/ENG COMPUTER NETWORK SIMULATOR

Enter filename with no extension (* for dir):

Figure I: Opening Screen

TOPMENU

Current file:
demo

1. Create or edit network
2. Create or edit routing table.
3. Run an analysis.
4. Load another network
5. Exit program.
Make your choice:

Figure 2: Main menu

51

P AFIT/ENG Network Simulator

N r~nk

INETWORK EDITOPI Active file: demo

Figure 3: Network editor

Now select "Node" again and place a second node about 2" to the

right of node 'a' - label this one 'b'.

Now that we have two nodes we can go ahead and connect them with

a link. Select the "Link" button and move the arrow anywhere

over the 'a' node. Press and hold down a mouse button. With the

button stIll pressed, move the arrow anywhere over node 'b' and

release (this is sometimes referred to as "dragging"). After

releasing the button you should see a line appear between the two

nodes and a prompt on the topline of the screen asking for the link

capacity. Enter "20". The link will be labeled with arrows in

both directions and capacities in kbps for each direction. Your

drawing should be similar to the following sketch:

52

AFIT/ENG Network Simulator

2 0 20

A network is constructed using the above techniques to place nodes

and connect them with links. For this exercise, we'll add one more

node and connect it to the others with simplex links.

Select the "Node" button and place another node c below the

first two. Next construct a 20 kbps link from node 'a' to 'c' using

the 'S' suffix when entering the capacity assignment. Do the same

for the link from 'c' to b. The final product should resemble the

one in the figure.

202

20

200

Having constructed our sample network we're ready to go on to

the routing editor. Mouse over to the "Save" button at the top and
click, then do the same for the "Route" button. The program will
now put you into the routing editor with Its green menu buttons

(Figure 4). Let's say we want to create a route from node'a' to

node b' using links "ac" and "cb". Select the "Create a Route"

button on the upper left. To create the route click on the nodes

along the route in order, in this case, a-c-b. The nodes and links

will be highlighted as they are selectd. After clicking on node 'b'

53

AFIT/ENG Network Simulator

mouse up to the large "Stop" bar and click. You'll be asked to enter

forward traffic in PACKETS PER SECOND rather than kbps. Enter

2. The editor will next ask you for reverse traffic which should

be none, so simply press the enter key. The route is now defined;

to see the routing table click on the "View" button. Our simple

routing table will be displayed showing the route and its traffic.

Click any button to return to the editor.

SI Create av w inalze'l t I Edit Dwo

27
02

P UTN DITR Active file: demo

Figure 4: Routing editor

Next click on the "Analyze" button to perform an analysis of the

newly created network. The routing editor will prompt you to

save the routing table. Default is "yes" so hit any key except n.

The analyzer will now load and prompt for packet size - we'll use

800. Note that the packet size is entered in BITS. After entering

the packet size the program will display the results of the

analysis. Along the bottom is displayed a series of commands

which are explained by typing 'H'. Note that the optimal cap

54

AFIT/ENG Network Simulator

column displays all zeroes until the user elects to calculate the

optimal capacity assignments based on desired delay. Your results

should be the same as those shown here.

Arr Rate Capacity Capacity Delay Traffic OItimal

1 Line (pkts/s) (kbps) (pkts/s) (ms) Intensity CaD(kbps)

1 ac 2.00 20 25.00 43.478 0.08000 0.00

2 cb 2.00 20 25.00 43.478 0.08000 0.00

To exit the analyzer type 'q' and answer the prompts. Note that

any changes to capacity assignments will update the .lnk files and

be automatically reflected in the drawing if you elect to save the

table. If you wish to save the results of the analysis for later

viewing or printing, type 'y' at the "Write table to text file?"

prompt.

This completes the tutorial.

55

j AFIT/ENG Network Simulator

Reference

Section

eThe analyzer has one executive and three functional

Structure elements. The network analysis may be Interrupted at any

stage and any work in progress may be saved.

Main Menu

Network Routing Network
Editor Editor Analyzer

The network editor is where the model is originated and

where the original capacity assignments for all links are

made. Any addition or removal of a node or link must be

done here. After a network has been drawn and all

capacities assigned, the routing editor Is selected from the

row of selection buttons at the top of the network editor

screen. The user may move freely back and forth between

the network editor and routing editor.

The routing editor builds and displays the routing table.

Routes are determined by using the mouse to select the

nodes that define the route. The current routing table can

be viewed quickly by selecting the "VIEW" command. (The

routing table screen stays resident in memory).

Finally, the analysis module uses the sets of nodes, links,

and routes to calculate the parameters of the network. The

module provides on-screen help to explain the various

56

I AFIT/ENG Network Simulator

commands. All of the parameters are displayed in a table

that can be saved to a text file if desired.

The rest of this manual will explain the various commands

and options available in each of the three modules -

network (drawing) editor, routing editor, and analyzer, as

well as the opening menu. (The terms Drawing Editor and

Network Editor are interchangeable).

I= te Displays choices. To begin building a network or to edit an

existing drawing, type "I" followed by <Enter>. To create

or edit a routing table type "2" followed by <Enter>. To

run an analysis type "3 <Enter>". Note that routing and

analysis are impossible without first creating a network

using the network editor.

Network ditor

Node Creates and labels a node. Node label must be a single,

unique, printable character. Action may be canceled by

clicking on the "Cancel" button at the top of the screen.

Note that the program restricts the mouse movement such

that a node can be placed only where it will be totally

displayed. A node appears on the screen as a rectancle

filled with blue slashes. User is prompted for a label

which is displayed in the center of the node. Control is

then returned to the network editor main menu. The

collection of nodes is saved as a .nde file.

57

APIT/ENG Network Simulator

Link Creates and assigns capacity In kbps to a link. Link Is

created by locating arrow over the node of origin and then

clicking and dragging the mouse over to the destination node

where the mouse button Is released. Capacity assignment

should be a numerical value with full-duplex being the

default condition. A simplex node is designated by the

addition of an 'S' suffix to the capacity entry. Only one link
In either direction is allowed. All links for a particular

network are saved as a .lnk file.

Save Saves the drawing as .nde and .lnk files. If you decide to

quit but forget to save the drawing the editor will ask

whether or not to save changes (if editing was done).

Delete Use to delete a network element. When selected the editor

displays two choices corresponding to either deleting a node

or deleting a link. Both are discussed below:

Delete a node Point to the node to delete and click. All connecting links

will automatically be eliminated. If an attempt is made to

delete a node that is used by a route the program will

disallow the action and inform you that a route is using that

node. Before deleting the node that Is In use you must first

use the routing editor to delete all routes that use the node.

To view the current list of routes, select first the "ROUTE"

button from the network editor and once in the routing

editor, select "VIEW".

i

58

3i

AFIT/ENG Network Simulator

Delete a link Type the labels of the terminating nodes In proper order.

If the link is not presently in use by a route, the editor

will delete the link connecting the two nodes. For example,

to delete the lInk connecting nodes 'a' and 'b, type "ab". No

<Enter> keypress is needed.

If an attempt is made to delete a link that Is used in the

routing table the program will disallow the action and alert

the user that the link Is in use. All routes that use the link

must first be deleted with the routing editor before the

link can be deleted.

Note: In proga m n t deletea a n r no og D=
Included Jn a ro.uUIt& crre sodn Lg. ruemIu
firs I dh U Ing Me routi g ediLtor,

Print Prints the displayed network. When selected, the routine

deletes the top menu and waits for a <Shift> <Prtsc> key

combination. For high quality printout, type 'h
immediately after <Shift><Prtsc>. It may be necessary to

use the 12 CPl (elite) setting on printers that are not
100% IBM graphics compatible. Pressing the <ESCAPE>

key will abort the print.

This option requires that the EGADMP.COM program be

loaded and resident. To print analysis results, use the Save

command from the Analyzer module to save the results as a

text file. The text file can be printed using the DOS "PRINT

(filename>" or "COPY <flename> PRN" command.

59

I I~l- I-I

AFIT/ENG Network Simulator

Route Invokes the routing editor. The routing editor uses the

drawing created by the network editor to develop a routing

table. It is readily distinguishable by the green menu

buttons. Changes made in the network editor will be

retained and may be saved to disk later if desired.

Quit Quits to the Topmenu. If changes have been made either to

the routing or the drawing, user will be queried whether

or not to save them. All changes may be discarded with a

negative response.

Analyze Invokes the analyzer. Program will ask if changes made

are to be saved. Default is yes. Also prompts for packet

size If none has been entered. The packet size vs a mean

value (exponentially distributed) in bits.

Replace Allows deletion and construction of a link without the

intermediate return to the top menu of the editor. Comes

in handy during network modifications.

Boutina ditor

Create a Route Creates a route by successive selection of nodes along the

route, beginning with the node of origin. As nodes are

selected with the mouse, the network elements are

highlighted in yellow to provide a trail. User is prompted

for forward and return traffic In gackets = 5econd.

Clicking on the "Stop" bar terminates selection of nodes or

aborts if no nodes have been selected. Route is

automatically added to the routing table and may be

observed by selecting the "VIEW" button.

60

j AFIT/ENG Network Simulator

A route may be defined over one or more links that do not

exist. The analysis portion of the application will catch

this and warn of the errors, after which It will

automatically place the user in the network editor to add

the missing links if desired.

Delete Shows the current routing table and prompts for entry of a

route to delete. If there is no match, no action will be

taken.

Save Saves the routing table as .rte file.

View Displays the current routing table. Will display up to 81

routes. This display remains resident in memory and is

quickly called up. This makes the routing and verification

process smooth and less frustrating than if the screen were

redrawn each time.

Analyze Invokes the analyzer if there are no disagreements between

the routing table and network. Will prompt user for

packet size if value has not already been entered. The

packet size is entered as bits per packet. If the routing

table and drawing disagree the analyzer will sound the

beeper and list the routes that are missing data links.

Quit Quits to Topmenu. Will prompt for saving of any edits to

the routing table or the drawing.

Edit Dwg Invokes the network editor. The network and routing

editors are freely switched from one to the other.

61

AFIT/ENG Network Simulator

AThe commands for the analyzer are displayed at the bottom

of the screen. Help can be displayed by typing h.

P Displays current packetsize in BITS. New packet size can

be entered if desired. Typing only <Enter> puts you back in

the analyzer without modifying the packet size. Changing

the packet size will automatically cause recalculation of

the network parameters.

D Views the average delay for the entire network in

mill iseconds. This value can later be modified as a delay

coi,.,t. in" for the network in order to find optimal

capacity assignment (Refer to "0" command).

C Enables the revision of any link capacity shown in the

analysis table. If the analysis results are saved, the new

capacity(s) will be autoratically entered ntVh drawing.

Typing <Enter> twice will abort the command and will not

affect the analysis.

0 Calculate optimal capacity assignment based on desired

delay in milliseconds. The optimal capacity assignments

will be displayed in the right-most column. Optimal

capacity assignments are zero by default until a delay

constraint is entered using this command,

R Replaces ALL capacity assignments with the current values

shown in the Optimal Cap(kbps) column. If the current

analysis is saved, the drawing w ill be updated to show all of

the new capacities; therefore, e with caution. It's

probably a good idea to keep a backup copy of any network

drawing before experimentino with it.

62

AFIT/ENG Network Simulator

A Alternate routing. The critical link will be displayed along

with the existing routes that contain the link. It also

prompts for modification of the routing table. If 'y' is

typed, the routing editor is invoked.

S Save the results of the current analysis. The drawing will

be updated to reflect any change in capacity assignments.

Also prompts for storage of the results as a text file. The

text file can be printed using the "PRINT <filename>" or

"COPY <filename> PRN" commands from DOS or may be

copied into a word processor.

C0 Quit to Topmenu.

63

AFIT/ENG Network Simulator

Formulas:

traffic for route i (packets/sec)

- •average packet size (bits/pkt) for network

C: link capacity in kpbs (kilobits per second)

C •service rate (packets/sec)

X •average arrival rate (packets/sec) for link i
(Sum of all traffic y using the link)

d • cost per kbps (Normalized to I).

T- X average delay for link i

m
-f -y' sum of all traffic on the net

1=1

m

x= I sum of all link arrival rates
ij=1
i-l

p- traffic intensity for link i
ICI

T = mean packet delay for network
IM

r: 1 1 4 d optimal capacity
C I + I j dJ d for link i based on

id I delay constraint T

64

I

Appendix B:

Tests

65

Appendix B

Equivalence Classes

External Valid Invalid

Opening menu: Flename 1 - 8 Characters(l), >8 Characters(2)

No file extension(3) File extension(4)

<Enter>(5)

Viewdir. Filename 1-8 Characters(6) <1 Character(7), >9 Char(8)

No file extension(9) File extension(1O)

Topmenu: T(11), '2'(12), '3'(13), Not in (1 .. 5) (14)

Menu selection '4'(15), or '5'(16)

Drawing Editor Module

External Valid Invalid
nd ns Equivalece

Drawnet: Active region(17) Inactive region(18)

Mouse button pressed ("Hotspot")

Drawnode: Mouse down Drawing area(19) Outside drawing area(20)

Cancel(21) Keypress(22)

Drawnode: Nodelabel Unique printable Non-printing character(23)

character(24) Non-unique character(25)

Drawlink: Draw a link Cancel(26) Not connecting 2 nodes(27)

Connect two nodes Overwrite existing Hnk(28)

w/o overwriting

existing link(29)

66

I

Drawlink: Linkcapacity 1 - 6 characters FDX(30) > 6 Characters(31)

1 - 6 characters SPX(32) < 1 Character(33)

FDX over existing SPX(34)
Non-printing Characters(35)

Save Command No editting done(36) Null database(37)

Save with changes(38)

Delete Command:

Delete a node Select node(39) Keypress(40)

Cancel(41) Select blank space(42)

Delete Command:

Delete a link Displayed link symbol(43) < 2 Characters(44)

Mouse down(45)

Non-existent link(46)

Print <Shift><Prtsc>(47) Mouse down(48)

<Shift><Prtsc> & 'h'(49)

Any other key(50)

Quit

Save drawing prompt 'y'(51), 'n'(52),Not 'y' or 'n'(53)

Replace Valid link symbol(54) Arbitrary string(55)

<Esc>(56) Other non-printing

Same as drawlink(57) character(58)

Routing Editor Module

External Valid Invalid

Routing editor Valid Selection(59) Keypress(60)
Invalid selection(61)

674 0, A

r

Create a Route Sequence of nodes(62) Selections outside nodes(63)

Stop selection(64) Keypress(65)

Delete <Enter>(66) Other non-print char(67)

Valid route symbol(68) Nonexistent route(69)

Save Changes(70) Null routing database(7 1)

No changes made(72)

View View routing table(72a)

Quit: saves changes? y(73), n(74),Not y or n(75)

Analysis Module

External Valid Invalid
Condition Euivalen Classes n Classes

Analyze: Bits per packet Pos floating point Non positive floating pt(76)

number(77) Non-numeric entry(78)

Analyze: menu selection Displayed selections(79) Non-displayed char (80)

Pktsize window prompt Pos floating point(8 1) Non positive floating pt(82)

<Enter>(83) Non-numeric entry(84)

Changecap:

Linklabel Displayed link(85) Arbitrary string(86)

Capacity Assignment I - 6 digits(87) <1(88), >6 digits(89),

Non-numeric(90)

Optimal capacity: delay >0 and <999999(92) <0(93), >999999(94)

Non-numerical(95)

Replace capacities with opt y(96), n(97) Not y or n(98)

68

Alternate routing y(99) , n(100),Not y or n(101)

Save: Write to text file y (102), n(103),Not y or n(104)

Quit Save table? y (105), n(106),Not y or n(107)

lHelp Any key(108)

69

Test Cases

Toplevel Routines

A totest" 1,3

B <Enter> 5

C totest_test" 2

D "test.rte" 4

E Its 6,9

F <Enter> 7

G ##testjtestt' 8

H "ttest.rte" 10

J 2 12

K 3 13

L 4 15

M 5 16

N X 14

70

Drawing editor

Tes Cae Te Equivalence- Classes Covered

A-a Drawnode: Cancel 17, 19, 21, 24, 26, 29, 30, 32, 36, 38,

-b Drawnode: valid area 39, 41, 43, 47, 49, 50, 54, 56, 57, 51
-c Nodelabel = 'a'

-d Create nodes 'b' and 'c'

-e Drawlink: Cancel

-f Drawlink: connect nodes 'a' and '

-g Capacity = "20"
-h Drawlink: connect nodes 'b' and 'c'

-i Capacity = "20s"

-j Save with changes

-k Save, no changes

-1 Delete node: cancel

-m Delete node: valid node
-n Delete link: valid label

-o Print: <Shift><Prtsc>
-p Print: <Shift><Prtsc>'h'

-q Print: Any other key

-r Replace: valid linksymbol

-s Replace: Draw link
-t Replace: <Esc>

-u Save drawing: 'y'

B Quit without saving 52

C Drawnet: Inactive region 18

D Drawnode: Check mouse 20

boundaries

E Drawnode: press any key 22

F Nodelabel: <BS> 23

71t.

'. rn r "r . , -' . . --- -- -

G Nodelabel: Repeat label 25

H Drawlink: Node to itself 27

I Drawlink: Space to Node 27

J Drawlink: Node to space 27

K Drawlink: Space to space 27

L Drawlink: Duplicate link 28

0 Linkcapacity: FDX over SPX

34

P Linkcapacity: <.BS> 35

Q Save: No data 37

R Delete: Press any key 40

S Delete: Click outside selection 42

T Delete link: Waand <Enter>
44

U Delete link: Mouse click 45

V Delete link: " xy"o 46

W Print: Mouse click 48

X Quit: <BS> 53

Y Replace: "xy" 55

72

z Rep lace: <BS> 58

Routing Editor

I~ cm nuvuinImla Classes Covered

A-a Select "Create a Route" 59, 62, 64, 66, 68, 70, 72a, 74

-b Select 'a' -> 'b'
-c Stop selection

-d Delete: <Enter>

-e Delete: "ab"

-f Save

-g View: Mouse click
-h Quit: 'n'

B Quit: Edit and quit, 'y' 73

C Quit: Edit and quit, <BS>

75

D Topmenu: Press any key 60

E Topemenu: Click no selection 61

F Create: Click outside nodes

63

G Create: Press any key 65

H Delete: <BS> 67

I Delete: "xyz" 69

1 Save: No routes 71

73

K Save: No changes 72

Analysis Module

T= Cm I ECivalecexIa Classes Covercd

A 1000 77

B -1000 76

C abcdefg 78

D p 79

E X 80

F 1000 81

G 0 82

H <Enter> 83

I <BS> 84

J "ab" 85

K "xyz" 86

L 1 87

M -1 88

N 20000000 89

0 "abcdef 90

P 5000 92

74

Q -100 93

R 1000000 94

S "!#%"95

T Y 96

U N 97

V <Enter> 98

W y 99, 102, 105

X n 100, 103, 106

Y <Enter> 101, 104, 107

Z <Enter> 108

Test Cases: Boundary Values

Toplevel Routines

Test C IcaEquivalence
nIM Classe Covred

A ,

B "1testnarne' 1

C "'alongne"f 2

D <Enter> 5

E Itat 6

75

F "testnarnel" 6

G <Enter> 7

H "alongnamre" 8

1 I I I I

J t5l 16

K '0' 14

L '6' 14

Other Routines

I1 fas= =I~ivlec
mnu Case Cvrd

A 1"30

B I100000" 30

C 1000000" 31

D "Is" 34

E 91100000s" 34

F <Enter> 33

G 1 77

H 0 76

1 -9999999 78

J1 87

76

K 999999 87

L 0 88

M 1000000 89

N .000001 91

0 1000000 94

77

M'ultinode and arrow tests

78

Appendix C: Software Evaluation Survey Results

This survey will be used to evaluate the operation of the AFIT/ENG Computer Network
Simulator. Please choose one of the five possibilities and feel free to add comments below
your response. There are some questions at the end and some space for any additional
comments. Thanks for participating.

1 2 3 4 5
Strongly Disagree Disagree Neutral Agree Strongly Agree

1. Most CAD packages that I've had experience with are somewhat difficult or awkward to
learn and use.

ML1 M 1L E
1 2 3 4 5

Mean = 3.27; Std Dev = 0.704; Low = 2; High = 4.
2. The mouse is better suited as a drawing device than the keyboard.

1 2 3 4 5

Mean = 4.73; Std Dev = 0.458; Low = 4; High = 5.
3. For most CAD programs that I've used in the past but don't use all the time,
"relearning" the commands and program flow takes too long.

[L n E] n E
1 2 3 4 5

Mean = 3.13; Std Dev = 0.834; Low = 2; High = 5.
4. Getting started. This network simulator has a reasonably short learning curve.

L 1 E El
1 2 3 4 5

Mean = 4.87; Std Dev = 0.352; Low = 4; High = S.
5. On-screen help. The amount and quality of on-screen help for the simulator is
adequate.

0 0] 0 E
1 2 3 4 5

Mean = 4.33; Std Dev = 0.617; Low = 3; High = 5.
6. User friendliness Overall the simulator has a somewhat intuitive interface.

1 2 3 4 5

Mean : 4.40; Std Dev : 0.632; Low = 3; High 5.

79

j
'77. Speed. The simulator seems to execute all of its commands quickly enough.

1 2 3 4 5

Mean = 4.53; Std Dev = 0.834; Low = 2; High = 5.
8. Portability. The requirements for EGA and a mouse are reasonable.

1 1 1E EL E
1 2 3 4 5

Mean = 3.00; Std Dev = 1.13; Low = 1; High = 5.
9. Usefulness. The simulator helped me understand the operation and performance
characteristics of a packet-switched network.

I 2 3 4 5

Mean = 4.20; Std Dev = 0.561; Low = 3; High = 5.
10. This software can be of value to an introductory course in computer networks.

E] EL EL M
1 2 3 4 5

Mean = 4.47; Std Dev = 0.640; Low = 3; High = 5.

Questions:

1. What improvements do you think are needed? What additional feature(s) should be
added?
* CGA Capability (4 responses)
* Keyboard only capability (2)
* Ability to save data to another file without leaving program (7)
* Ability to calculate total network capacity (2)

2. Did you uncover any major bug(s) in the software? If so, what?
- Incapability with a certain brand of third party graphics board with enhanced
EGA - 640 by 480 pixels (1)
* Problems when deleting all elements in a file - probably got a null pointer
assignment (1)

3. Any general comments?
- Mostly positive. Negative comments were extensions of responses given in
Question #1 above.

80

I. Adams, Charles A. Jr. A Digital Circui Digr Emironmnn MS Thesis
AFIT/ENG/GCS/87D-I. School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson Air Force Base OH, December 1987.

2. Booch, Grady. Software Engineerng with Ada (Second Edition). Menlo Park,
California: The Benjamin/Cummings Publishing Company, Inc., 1987.

3. Carroll, John M. and Sandra A. Mazur. 'isaLearning", = Computer. .12: 35-
49. (November 1986).

4. Hayes, Jeremiah F. Moin and Analysis of Conmuter Communications
Networks. New York: Plenum Press, 1984.

5. Howden, William E. "A Functional Approach to Program Testing and Analysis",
I Transations on Software Enineng, SE-12: 997-1005. (October 1986).

6. Johnson, Nelson. Advanced Graphics in . P ad Technigues.
Berkeley, California: Osborne McGraw-Hill, 1987.

7. Kleinrock, Leonard. QOuu.in g Systems. OL L: Ib . New York: John Wiley,
1975.

8. Pracher, John. "Simulation of Network Routing Strategies", Special Project
Report, School of Engineering, Air Force Institute of Technology, September,
1988.

9. Pressman, Roger S. Software Enineerina. A Practitioner's Approach (Second
Edition). New York: McGraw-Hill Book Company, 1987.

10. Schildt, Herbert. Trbo Q D& Complete Reference. Berkeley: Osborne McGraw-
Hill, 1988.

11. Tanenbaum, Andrew, S. Comouter Networks. Englewood Cliffs, New Jersey:
Prentice-Hall, Inc., 1981.

81

:[81

VITA

Captain Ralph Puckett He at-

tended North Carolina State University at Raleigh where he graduated with a degree in Zo-

ology. His first position after graduation was laboratory research technician for the U.S.

Environmental Protection Agency where he co-authored two published papers on the

chemical analysis of environmental pollutants.

Capt Puckett received his commission from the Officer Training School in 1982 and

was subsequently assigned to an AFIT sponsored tour where he received his B.S. in

Electrical Engineering from Louisiana Tech University. After graduation from Tech he

went through the Air Force Communications Command comm-electronics officers course

at Keesler AFB, Mississippi.

In May of 1984 Capt Puckett was assigned to OLAA, 6008 Tactical Air Control

Flight (PACAF), Wheeler AFB, Hawaii. He served as Deputy Chief, Engineering and In-

stallation and was responsible for overseeing projects associated with Project Constant

Watch - an upgrade to the command and control system in support of U. S. Air Force

tactical operations in the Republic of Korea.

Capt Puckett received his Master's Degree in Business Administration from Chami-

nade University in Honolulu in December 1986. He entered the School of Engineering at

AFIT in May 1987.

82

REPORT DOCUMENTATION PAGE DA oIOI?

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIE MARKINGS
UNCLASSIFIED

Za. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABIUITY OF REPORT

2b. ICLSSIICATONIOWNRADIG SHEDLE Approved for public release;
2b. ECLASIFIATIO I 0 DOIG ~Distribut ion unlimited

4. PERORMING ORGANIZATIO REPORT NUMBER(S 5. MONITORING ORGSANIATION REt INUMBER(S

AFIT/GE/FE/88D-39

So. NAME OF PERFORMING ORG3ANIZAT11ON 16b. OFFICE sYMBO Pa. NAME OF MONITORING ORGANIZATION
o (f appkiable

School of Engineering AFIT/m3

4c ADDRESS (GW, Sot~ &nd ZIPOW7bADO9ESBq '*taIFW
Air Force Institute of Technology
Wright-Patterson AFB, CH 4543346583

B&. NAME OF FUNDING/I SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

ADDRESS (City, State, a&W IP Cado) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PRJC TASK I WORK UNIT

PLEONTECT NO NO. rCESSION NO.

11. TITLE (lincludo Security CIassillcatlon)I
DESIGN AMD IMPLENTATION OF A PC BASED NEMWRK SI!4JIAIR FOR ENGINEERING EDUCATION

12. PERSONAL AUTHOR(S)
Ralph D. Puckett, Captain, USAF

1 3a. TYPE OF REPORT I1 3b. TIME COVERED 14. DATE" OF REPORT (Year, Mnth, Day) 11S. PAGE COUNT
MS Thesis FROM TO F 1988 DecemberI 8

16. SUPPLEMENTARY NOTATION

17. COSATI COOES 16. SUBJECT TERMS (Continue on roernu If necessary and identify by block number)
FIELD GROUP SUB-GROUP

I c Ccnputer Graphics, Computer Aided Design, Computer Networks

19. ABSTRACT (Continue on rover*e if necessary and Zdntiy by block number)

Thesis Chairman: Bruce L. George, Captain, USAF

Assistant Professor of Electrical Engineerin~g

20. DISTRIBUTION/I AVAILABILITY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION
MIUNCLASSIFIEDIUNLIMITED C3 SAME AS RPT. [3 OTIC USERS ULLASIiIX)

226. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (knclde Area Code) 22c. OFFICE SYMBOL

00 Form 1473. JUN 86 Previous ed'jtIon ame obole. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

19 (cant)

The purpose of this study was to design and implement a simulator to
assist students of computer networks. The basic objective was to create
a software application that provides rapid feedback on network design deci-
sions. Of particular interest is the packet switched network with data
links of various capacity assignments. Another basic objective was to
create a graphics interface that eliminated the need to learn a simulation
language while still maintaining a powerful and useful product.
The end product was a result of the application of both networking theory
as well as software engineering principles with particular attention being
paid to reliability and maintainability. With this tool the student can
create any network topology simply by pointing and clicking a mouse and
entering a few network parameters from the keyboard. The application can
be run on a personal computer - an environment which is accessible and
fairly well understood. KE4 Lod s .-, I
The design and implementatioK of the application is presented in this work
along with the results of developmental testing. In addition, a sample of
fifteen students was chosen to provide the initial beta test and those results
are presented. A comprehensive user's manual is included as an appendix.
Finally, several recommendations concerning future development are discussed.

~> (~ /t

I
I
-

